Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability.
نویسندگان
چکیده
Antimony nanoparticle decorated N-rich porous carbon nanosheets were prepared through a sol-gel route. The composite displayed high reversible capacity, superior rate performance and long cycling stability as an anode material for room temperature Na-ion batteries. Even at an ultrahigh charge-discharge rate of 2 A g(-1), a large specific capacity of 220 mA h g(-1) was still achieved after 180 cycles.
منابع مشابه
Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials
We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to...
متن کاملHigh capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.
A Sb/C nanocomposite was synthesized and found to deliver a reversible 3 Na storage capacity of 610 mA h g(-1), a strong rate capability at a very high current of 2000 mA g(-1) and a long-term cycling stability with 94% capacity retention over 100 cycles, offering practical feasibility as a high capacity and cycling-stable anode for room temperature Na-ion batteries.
متن کاملNitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
Between the sheets: Sodium-ion batteries are an attractive, low-cost alternative to lithium-ion batteries. Nitrogen-doped porous carbon sheets are prepared by chemical activation of polypyrrole-functionalized graphene sheets. When using the sheets as anode material in sodium-ion batteries, their unique compositional and structural features result in high reversible capacity, good cycling stabil...
متن کاملInexpensive Antimony Nanocrystals and Their Composites with Red Phosphorus as High-Performance Anode Materials for Na-ion Batteries
Sodium-ion batteries increasingly become of immense research interest as a potential inexpensive alternative to Lithium-ion batteries. Development of high-energy-density negative electrodes (anodes) remains to be a great challenge, especially because of significant differences between lithium and sodium chemistries. Two Na-ion anode materials - antimony (Sb) and phosphorus (P) - have been recen...
متن کاملCNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries
This work describes a potential anode material for lithium-ion batteries (LIBs), namely, anatase TiO2 nanoparticle-decorated carbon nanotubes (CNTs@TiO2). The electrochemical properties of CNTs@TiO2 were thoroughly investigated using various electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic cycling, and rate experiments. It was revea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical communications
دوره 50 85 شماره
صفحات -
تاریخ انتشار 2014